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Optimal Designs Approach to Portfolio Selection 
I.A. Etukudo 1  

In order to obtain the best tradeoff between risk and return, optimization algorithms are particularly useful in 
asset allocation in a portfolio mix. Such algorithms and proper solution techniques are very essential to 
investors in order to circumvent distress in business outfits. In this paper, we show that by minimizing the total 
variance of the portfolio involving stocks in two Nigerian banks which is a measure of risk, optimal allocation of 
investible funds to the portfolio mix is obtained. A completely new solution technique – modified super 
convergent line series algorithm which makes use of the principles of optimal designs of experiment is used to 
obtain the desired optimizer.  
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1. Introduction 
 
In every investment, there is a tradeoff between risk and returns on such investment. An investor therefore must be 
willing to take on extra risk if he intends to obtain additional expected returns. However, there must be a balance 
between risk and returns that suits individual investors, Neveu (1985).   
 
Great care must be taken by any investor in the allocation of his investible funds to a list of investments open to 
him in order to minimize the total risk involved. A mathematical model to suit a problem of this nature and in 
particular, a quadratic programming model for portfolio selection was developed by Markowitz (1952, 1959).   
 
A portfolio mix is a set of investments that an investor can invest in while a portfolio risk refers to the risk 
common to all securities in the portfolio mix and this is equated with the standard deviation of returns, Ebrahim 
(2008). 
 
The purpose of the investment of cash in portfolios of securities is to provide a better return than would be earned 
if the money were retained as cash or as a bank deposit. The return may come in the form of a regular income by 
way of dividends or interest or by way of growth in capital value or by a combination of both regular income and 
growth in capital value, Cohen and Zinbarg (1967). Thus, the real objective of portfolio construction becomes that 
of achieving the maximum return with minimum risk, Weaver (1983). 
 
Grubel (1968) showed that higher returns and lower risks than the usual are obtained from international 
diversification. Arnott and Copeland (1985) have also shown that the business cycle has a significant effect on 
security returns. On their part, Chen, Roll and Ross (1986) determined that certain macroeconomic variables are 
significant indicators of changes in stock returns. Contributing further, Bauman and Miller (1995) showed that the 
evaluation of portfolio performance should take place through a complete stock market cycle because of 
differences in performance during the market cycle. Macedo (1995) demonstrates that switching between relative 
strength and relative value strategies can increase returns in an international portfolio. 
 
Since portfolio selection problem is a quadratic programming problem which involves a minimization of risk 
associated with such investment by minimizing the total variance which is a measure of the risk involved, Francis 
(1980), suitable solution technique should be adopted to obtain optimal solution. Etukudo and Umoren (2009) have 
shown that it is easier and in fact better to use modified super convergent line series algorithm (MSCLSQ) which 
uses the principles of optimal designs of experiment in solving quadratic programming problems rather than using 
the traditional solution technique of modified simplex method. This paper therefore focuses on optimal designs 
approach to optimal allocation of investible funds in a portfolio mix.  
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2. A quadratic programming model for portfolio selection 
 
For a quadratic programming model for portfolio selection, let 
 n = number of stocks to be included in the portfolio 
 xj =  number of shares to be purchased in stocks j, j = 1, 2, …, n 
 Yj = returns per unit of money invested in stocks j at maturity 
 
Assuming the values of Yj are random variables, then 
   

n ..., 1,2,j;Y)Y(E jj ==          (1) 

        ( )( )[ ]jjii YYYYE −−== ijV σ         (2) 

 
where E(Yj) is the mathematical expectation of Yj and V is the variance – covariance matrix of the returns. See 
Gruyter (1987), Parsons (1977) and Etukudo et al (2009). Hence, the variance of the total returns or the portfolio 
variance is given by  
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which measures the risk of the portfolio selected. The non-negativity constraints are 
 
          xj ≥ 0 , j = 1, 2, …, n         (4)  
                               
Assuming the minimum expected returns per unit of money invested in the portfolio is B, then 
      BxY

n

1j
jj ≥∑

=

        (5) 

 
2.1 Minimization of the total risk involved in the portfolio  
 
By minimizing the total variance, f(x) of the portfolio, the total risk involved in the portfolio is minimized. In order 
to obtain a minimum point of equation 3, f(x) must be a convex function, Hillier and Lieberman (2006). That is, 
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where  i ≠ j = 1, 2, …, n . Strict inequalities of 6 and 7 imply that f(x) is strictly convex and hence, has a global 
minimum at x*. From equation 3 and inequalities 4 and 5, the portfolio selection model is given by; 

jxixi

n

1i

n

1j
j

)x(Min  ∑∑
= =

= σf  

                    subject to: 
 ;   xj ≥ 0 , j = 1, 2, …, n   

 
Remark  
 
The expected values, jY  and the variance – covariance matrix, σij are based on data from historical records. 
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3. Modified super convergent line series algorithm (MSCLSQ), Umoren and Etukudo (2009)  
 
The sequential steps involved in MSCLSQ are given as follows:  
 
Step 1: Let the response surface be 

   y = c0 + c1x1 + c2x2 + 2
11

xq  + q2x1x2 + 2
23

xq    

                    x1, x2 ∈ Gi , i = 1, 2, …, k* 
 
Select N support points such that  3k* ≤ N ≤ 4k* where 2 ≤ k* ≤ 3 is the number of partitioned groups desired. By 
arbitrarily choosing the support points as long as they do not violate any of the constraints, make up the initial 
design matrix 
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Step 2: Partition X into k* groups with equal number of support points and obtain the design matrix, Xi, i = 1, 2, 
…, k* for each group. Obtain the information matrices Mi = 

ii
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Step 3: Compute the matrices of the interaction effect of the variables for   the groups. These are 
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where i = 1, 2, …, k* and the vector of the interaction parameters obtained from f(x) is given by 
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The interaction vectors for the groups are given by I i = g
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X'XM and the matrices of mean square error for the 
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Step 4: Compute the optimal starting point, *
1
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Step 5: The matrices of coefficient of convex combinations of the matrices of mean square error are  



56                                                   Optimal Designs Approach to Portfolio Selection                                   I.A. Etukudo 
 

 

 

                      Hi = diag












∑∑ ∑ i33

i33

i22

i22

i11

i11

v
v

v
v

v
v

,,  = diag{hi1, hi2, hi3} , i = 1, 2, …, k*  

 
By normalizing Hi such that  ∑

'*
i

*
i
HH  = I, we have   

 

                   *
i

H = diag



















∑∑∑
2
i3

i3

2
i2

i2

2
i1

i1

h

h

h

h

h

h
,,

 
 
          The average information matrix is given by 
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Step 6: From f(x), obtain the response vector 
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Hence, we define the direction vector 
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and by normalizing d such that *d*'d  = 1, we have 
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Step 7: Obtain the step length,*ρ
1
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the quadratic programming problem.  
 
Step 8: Make a move to the point *d*x*x
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4. A Numerical Example 
 
An investor has a maximum of N10, 000.00 to invest by purchasing shares in Oceanic Bank and First City 
Monument Bank.  Below is the historical data of prices per share in the banks for 25 days. 
We are required to obtain optimal allocation of the investible funds for purchase of shares in the portfolio in order 
to minimize the total risk in the portfolio mix. From the data on table 3.1, the mean prices per share for First City 
Monument Bank and Oceanic Bank are 18.13 and 28.19 respectively.  
 

Table 3.1:    Price per share 

Day FCMB (Y1) 
Oceanic 

Bank  (Y2) Day FCMB (Y1) 
Oceanic 

Bank  (Y2) 
1 17.6 29.89 14 18.5 26.95 
2 17 29.61 15 18.78 26 
3 17.55 28.95 16 18.4 27.3 
4 17.9 27.95 17 18.74 28.86 
5 17.5 28 18 18.74 30.09 
6 17.7 28.61 19 19.1 30.6 
7 17.74 28.6 20 18.71 29.6 
8 17 26.49 21 18.9 28.6 
9 16.8 25.99 22 18.75 29.01 
10 16.99 25.95 23 18.53 28.98 
11 18.5 27.3 24 18.5 28.55 
12 18.8 27.17 25 18.49 28.75 
13 18.1 26.99    

i
Y∑  

Y  

453.32 704.79 

18.13 28.19 
 

Table 3.2:  Mean deviation 
Day )Y(Y 11 −  )Y(Y 22 −  Day )Y(Y 11 −  )Y(Y 22 −  

1 -0.5328 1.6984 14 0.3672 -1.2416 
2 -1.1328 1.4184 15 0.6472 -2.1916 
3 -0.5828 0.7584 16 0.2672 -0.8916 
4 -0.2328 -0.2416 17 0.6072 0.6684 
5 -0.6328 -0.1916 18 0.6072 1.8984 
6 -0.4328 0.4184 19 0.9672 2.4084 
7 -0.3928 0.4084 20 0.5772 1.4084 
8 -1.1328 -1.7016 21 0.7672 0.4084 
9 -1.3328 -2.2016 22 0.6172 0.8184 
10 -1.1428 -2.2416 23 0.3972 0.7884 
11 0.3672 -0.8916 24 0.3672 0.3584 
12 10.6672 -1.0216 25 0.3572 0.5584 
13 -0.0328 -1.2016    

 
 
The expected return per share is the difference between the mean price of that share and its price on the 25th day. 
The investor assumes that his expected returns would be at least N100.00. Since his objective is to minimize his 
total risk, the problem involves obtaining optimal portfolio mix where the investment is done at the 25th day prices. 
 
The share price deviations are obtained from table 3.1 as shown in table 3.2 while the variance – covariance matrix 
table for the share price are obtained from table 3.1 as shown in table 3.3. 
 
From the table 3.3, the variance- covariance matrix is given by 
 

Source: The Nigerian Stock Exchange  
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Hence, the model for minimizing the total risk of the portfolio is 
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Subject to: 

    10,000x75.8218.49x 21 ≤+  
            100x5584.00.3572x 21 ≥+  

0x,x 21 ≥  

 
where x1 and x2 are respectively the number of shares purchased from First City Monument Bank and Oceanic 
Bank in the Portfolio.  
 

Table 3.3: Variance- covariance matrix value 

Day 
2

11 )Y(Y −  )Y)(YY(Y 2211 −−  2
22 )Y(Y −  Day 

2
11 )Y(Y −  )Y)(YY(Y 2211 −−  2

22 )Y(Y −  

1 0.28387584 -0.90490752 2.88456256 14 0.13483584 -0.45591552 1.54157056 
2 1.28323584 -1.60676352 2.01185856 15 0.41886784 -1.41840352 4.80311056 
3 0.33965584 -0.44199552 0.57517056 16 0.07139584 -0.23823552 0.79495056 
4 0.05419584 0.05624448 0.05837056 17 0.36869184 0.40585248 0.44675856 
5 0.40043584 0.12124448 0.03671056 18 0.36869184 1.15270848 3.60392256 
6 0.18731584 -0.18108352 0.17505856 19 0.93547584 2.32940448 5.80039056 
7 0.15429184 -0.16041952 0.16679056 20 0.33315984 0.81292848 1.98359056 
8 1.28323584 1.92757248 2.89544256 21 0.58859584 0.31332448 0.16679056 
9 1.77635584 2.93429248 4.84704256 22 0.38093584 0.50511648 0.66977856 
10 1.30599184 2.56170048 5.02477056 23 0.15776784 0.31315248 0.62157456 
11 0.13483584 -0.32739552 0.79495056 24 0.13483584 0.13160448 0.12845056 
12 0.44515584 -0.68161152 1.04366656 25 0.12759184 0.19946048 0.31181056 
13 0.00107584 0.03941248 1.44384256     
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5. Test for Convexity 
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f(x) is  strictly a convex function and its global minimum point, x*  is obtained by solving the above portfolio 
selection problem.  
 
6. Solution to the portfolio selection problem by optimal designs approach 
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Subject to: 
     10,00028.75x18.49x 21 ≤+  
     100x5584.00.3572x 21 ≥+  

0x,x 21 ≥  

Let X
~

 be the area defined by the constraint. Hence 
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Step 1: Select N support points such that 3∗k ≤ N ≤ 4 ∗k  where 3k2 ≤≤ ∗  is the number of partitioned groups 

desired.  By choosing 2k =∗ , we have 8N6 ≤≤  
 
Hence, by arbitrarily choosing 8 support points as long as they do not violate the constraints (within the feasible 
region), the initial design matrix is 
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Step 2: Partition X into 2 groups such that  
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and the design matrices for the two groups are  
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The respective information matrices are 
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Step 3:  The matrices of the interaction effect of the variables are 
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and the vector of the interaction parameters obtained from f(x) is given by  
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The matrices of mean square error for the groups are respectively 
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Step 4:    Obtain the optimal starting point 
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0.0003122

0.00004132
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0.0003122

0.00004098
u
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0.00003717
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0.1367
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0.00004269
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0.0003122
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Hence, the optimal starting point is   ∑
=
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Step 5: Obtain the matrices of coefficients of convex combinations from 1M  and  2M  as follows: 
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
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and by normalizing 21 HandH  such that 1HHHH 22
'
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The average information matrix is given by 
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( )
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
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



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
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Step 6: From )x,f(x 21 , obtain the response vector  
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






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




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z
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Therefore, 
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Here, we define the direction vector 
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and by normalizing d such that 1dd ' =∗∗ , we have 
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Step 7: Obtain the step length, 
∗
iρ  from 

 







 −

∗

∗
=∗

dc

bc
min '

i

i
'
i

i
ρ i

1x  

where ,bxc i
'
i =  m...,,2,1i =  is the ith constraint of  the portfolio selection problem. 
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Step 8: Make a move to the point 
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1ρ = -140.8659 is the minimum step length. 

 
 
Step 9 
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Make a second move by replacing 








=∗
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111.4350
1x  by 
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






=∗

209.9040

214.4242
2x  

The new step length is obtained as follows: 
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Since the new step length is negligible, the optimal solution was obtained at the first move and hence, 
 

287001)f( and
209.9040

214.4242
=








= ∗∗

22 xx  

 
The portfolio selection problem which is a minimization of portfolio variance was solved using modified super 
convergent line series algorithm which gave  

214x1 =  

210x2 =  
as the number of shares to be purchased from Oceanic Bank and First City Monument Bank respectively in order 
to obtain a minimum risk or minimum variance.  
 
7. Summary and Conclusion 
 
In this paper, we assumed that the portfolio has already been selected by the investor from a list of available 
investments. Using historical data prices (25 days) of stocks from First City Monument Bank and Oceanic Bank, 
we showed how optimal allocations of investible funds could be made to each Bank’s stocks by minimizing the 
portfolio variance thereby minimizing the total risk using optimal designs approach.  
 
The approach adopted in obtaining optimal solution is recommended for use by potential investors as a way out of 
business collapse.  
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